Engineered contrast agents in a single structure for T-1-T-2 dual magnetic resonance imaging

Cabrera-Garcia, Alejandro; Checa-Chavarria, Elisa; Pacheco-Torres, Jesus; Bernabeu-Sanz, Angela; Vidal-Moya, Alejandro; Rivero-Buceta, Eva; Sastre, German; Fernandez, Eduardo; Botella, Pablo

Publicación: NANOSCALE
2018
VL / 10 - BP / 6349 - EP / 6360
abstract
The development of contrast agents (CAs) for Magnetic Resonance Imaging (MRI) with T-1-T-2 dual-mode relaxivity requires the accurate assembly of T-1 and T-2 magnetic centers in a single structure. In this context, we have synthesized a novel hybrid material by monitoring the formation of Prussian Blue analogue Gd(H2O)(4)[Fe(CN)(6)] nanoparticles with tailored shape (from nanocrosses to nanorods) and size, and further protection with a thin and homogeneous silica coating through hydrolysis and polymerization of silicate at neutral pH. The resulting Gd(H2O)(4)[Fe(CN)(6)]@SiO2 magnetic nanoparticles are very stable in biological fluids. Interestingly, this combination of Gd and Fe magnetic centers closely packed in the crystalline network promotes a magnetic synergistic effect, which results in significant improvement of longitudinal relaxivity with regards to soluble Gd3+ chelates, whilst keeping the high transversal relaxivity inherent to the iron component. As a consequence, this material shows excellent activity as MRI CA, improving positive and negative contrasts in T-1- and T-2-weighted MR images, both in in vitro (e.g., phantom) and in vivo (e.g., Sprague-Dawley rats) models. In addition, this hybrid shows a high biosafety profile and has strong ability to incorporate organic molecules on the surface with variable functionality, displaying great potential for further clinical application.

Access level