Maximal entanglement in high energy physics

Cervera-Lierta, Alba; Latorre, Jose I.; Rojo, Juan; Rottoli, Luca

Publicación: SCIPOST PHYSICS
2017
VL / 3 - BP / - EP /
abstract
We analyze how maximal entanglement is generated at the fundamental level in QED by studying correlations between helicity states in tree-level scattering processes at high energy. We demonstrate that two mechanisms for the generation of maximal entanglement are at work: i) s-channel processes where the virtual photon carries equal overlaps of the helicities of the final state particles, and ii) the indistinguishable superposition between t- and u-channels. We then study whether requiring maximal entanglement constrains the coupling structure of QED and the weak interactions. In the case of photon-electron interactions unconstrained by gauge symmetry, we show how this requirement allows to reproduce QED. For Z-mediated weak scattering, the maximal entanglement principle leads to non-trivial predictions for the value of the weak mixing angle theta(W). Our results are a first step towards understanding the connections between maximal entanglement and the fundamental symmetries of high-energy physics.
14 InfluRatio

Access level

Gold DOAJ