The Wilms' tumor suppressor gene regulates pancreas homeostasis and repair
Ariza, Laura; Rojas, Anabel; Munoz-Chapuli, Ramon; Carmona, Rita
Publicación: PLOS GENETICS
2019
VL / 15 - BP / - EP /
abstract
The Wilms' tumor suppressor gene (Wt1) encodes a zinc finger transcription factor that plays an essential role in the development of kidneys, gonads, spleen, adrenals and heart. Recent findings suggest that WT1 could also be playing physiological roles in adults. Systemic deletion of WT1 in mice provokes a severe deterioration of the exocrine pancreas, with mesothelial disruption, E-cadherin downregulation, disorganization of acinar architecture and accumulation of ascitic transudate. Despite this extensive damage, pancreatic stellate cells do not become activated and lose their canonical markers. We observed that pharmacological induction of pancreatitis in normal mice provokes de novo expression of WT1 in pancreatic stellate cells, concomitant with their activation. When pancreatitis was induced in mice after WT1 ablation, pancreatic stellate cells expressed WT1 and became activated, leading to a partial rescue of the acinar structure and the quiescent pancreatic stellate cell population after recovery from pancreatitis. We propose that WT1 modulates through the RALDH2/retinoic acid axis the restabilization of a part of the pancreatic stellate cell population and, indirectly, the repair of the pancreatic architecture, since quiescent pancreatic stellate cells are required for pancreas stability and repair. Thus, we suggest that WT1 plays novel and essential roles for the homeostasis of the adult pancreas and, through its upregulation in pancreatic stellate cells after a damage, for pancreatic regeneration. Due to the growing importance of the pancreatic stellate cells in physiological and pathophysiological conditions, these novel roles can be of translational relevance. Author summary The pancreas is largely composed by an exocrine tissue organized in acini, which secrete digestive enzymes. Pancreatic stellate cells (PSC) are arranged around the acini and they can become activated by a damage and contribute to pancreas repair. The pancreas is externally covered by a mesothelium characterized by the expression of the transcription factor WT1. Loss of WT1 function in adult mice provokes a rapid and severe deterioration of the pancreas, with disorganization of the acinar tissue. Despite the extensive damage, PSC do not become activated. We first showed that a pharmacologically induced acute pancreatitis led to expression of WT1 in PSC concomitant to their activation. Then, we induced pancreatitis in mice where WT1 had been previously deleted, and the upregulation of WT1 in PSC partially rescued the repairing phenotype of the PSC and reduced the disorganization of the acinar tissue. Thus, we suggest that WT1 function is necessary to maintain the integrity of the pancreatic mesothelium and, at the same time, it is required for activation of the repairing phenotype in PSC.
64
InfluRatio
Access level
Gold, Green published, Green submitted
MENTIONS DATA
Molecular Biology & Genetics
-
0 Twitter
-
9 Wikipedia
-
0 News
-
4 Policy
Publicaciones similares en Molecular Biology & Genetics